Advertisements
Advertisements
Question
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
Solution
5x + 1 = 25x - 2
⇒ 5x + 1 = (52)x - 2
⇒ 5x + 1 = 52x - 4
If bases are equal, powers are also equal.
⇒ x + 1 = 2x - 4
⇒ 2x - x = 4 + 1
⇒ x = 5
∴ 3x - 3 x 23 - x
= 35 - 3 x 23 - 5
= 32 x 2-2
= 9 x `1/4 = 9/4`
APPEARS IN
RELATED QUESTIONS
Solve for x : 25x-1 = 4 23x + 1
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1