Advertisements
Advertisements
Question
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
Solution
L.H.S.
= `sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)`
= `sqrt(y/x) · sqrt(z/y) · sqrt(x/z)` .....(Using (am)n = amn)
= `sqrt((y/x)(z/y)(x/z))`
= `sqrt(x^(1-1) · y^(1-1) · z^(1-1))`
= `sqrt(x^° · y^° · z^°)`
= `sqrt(1·1·1)`
= 1 ......(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve for x : (49)x + 4 = 72 x (343)x + 1
Find x, if : 42x = `1/32`
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Solve : 3x-1× 52y-3 = 225.
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0