Advertisements
Advertisements
Question
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Solution
L.H.S.
= `("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
= `"a"^("m"("m" + "n" - 1))/("a"^("n"("m"+"n" - 1)))·"a"^("n"("n" + 1 - "m"))/("a"^(1("n"+ 1 - "m")))·"a"^(1(1 + "m" - "n")) /"a"^("m"(1 + "m" - "n")) ` ......(Using(am)n = amn)
= `"a"^("m"^z + "mn" - "m")/"a"^("n"^z+"mn" - "n")·"a"^("n"^z - "mn" + "n")/"a"^("n"+1-"m")·"a"^(1 + "m" - "n")/"a"^("m"^z - "mn" + "m")`
= `"a"^("m"^z + "mn" - "m" - ("n"^z+"mn"-"n")) ·"a"^("n"^z - "mn" - ("n" + 1 - "m"))·"a"^(1+"m"-"n"-("m"^z-"mn"+"m"))` ....(Using am ÷ an = am-n)
= `"a"^("m"^z+"mn"-"m"-"n"^z-"mn"+"n")·"a"^("n"^z-"mn"+"n"-"n"-1+"m")·"a"^(1+"m"-"n"-"m"^z-"mn"+"m")`
= `"a"^("m"^z + "mn"-"m"-"n"^z-"mn"+"n"+"n"^z-"mn"+"n"-"n"-1+"m"+1+"m"-"n"-"m"^z+"mn"-"m")` ....(Using am x an = am+n)
= a°
= 1 .....(Using a° = 1)
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve for x : 22x+1 = 8
Solve for x : 25x-1 = 4 23x + 1
Find x, if : 42x = `1/32`
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve : `(sqrt(3))^( x - 3 ) = ( root(4)(3))^( x + 1 )`
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1