Advertisements
Advertisements
Question
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
Solution
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
⇒ `{(3^2)^(1/2)}^-7 {(3)^(1/2)}^-5` = 3k
⇒ `3^-7 xx 3^((-5)/2)` = 3k
⇒ `3^(-7 -5/2)` = 3k
⇒ `3^((-14 - 5)/(2)` = 3k
⇒ `3^((-19)/(2)` = 3k
⇒ k = `(-19)/(2)`.
APPEARS IN
RELATED QUESTIONS
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
Find the value of (8p)p if 9p + 2 - 9p = 240.