Advertisements
Advertisements
प्रश्न
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
उत्तर
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
⇒ `{(3^2)^(1/2)}^-7 {(3)^(1/2)}^-5` = 3k
⇒ `3^-7 xx 3^((-5)/2)` = 3k
⇒ `3^(-7 -5/2)` = 3k
⇒ `3^((-14 - 5)/(2)` = 3k
⇒ `3^((-19)/(2)` = 3k
⇒ k = `(-19)/(2)`.
APPEARS IN
संबंधित प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Prove the following:
`sqrt(x^-1 y) · sqrt(y^-1 z) · sqrt(z^-1 x)` = 1
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1