Advertisements
Advertisements
Question
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Solution
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
= `(2^3 xx 3^5 xx (2^3 xx 3)^2)/((2^2 xx 3^2)^2 xx (2 xx 3^2)^3 xx (3^3))`
= `(2^3 xx 3^5 xx 2^6 xx 3^2)/(2^4 xx 3^2 xx 2^3 xx 3^6 xx 3^3)`
= `(2^9 xx 3^7)/(2^7 xx 3^11)`
= `(2^(9 - 7))/(3^(11 - 7))`
= `(2^2)/(3^4)`
= `(4)/(81)`.
APPEARS IN
RELATED QUESTIONS
Solve for x : 22x+1 = 8
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve : `[3^x]^2` : 3x = 9 : 1
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Solve for x:
3 x 7x = 7 x 3x
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
5x2 : 5x = 25 : 1
Find the value of k in each of the following:
`(root(3)(8))^((-1)/(2)` = 2k