Advertisements
Advertisements
प्रश्न
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
उत्तर
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
= `(2^3 xx 3^5 xx (2^3 xx 3)^2)/((2^2 xx 3^2)^2 xx (2 xx 3^2)^3 xx (3^3))`
= `(2^3 xx 3^5 xx 2^6 xx 3^2)/(2^4 xx 3^2 xx 2^3 xx 3^6 xx 3^3)`
= `(2^9 xx 3^7)/(2^7 xx 3^11)`
= `(2^(9 - 7))/(3^(11 - 7))`
= `(2^2)/(3^4)`
= `(4)/(81)`.
APPEARS IN
संबंधित प्रश्न
Solve for x : 25x-1 = 4 23x + 1
Find x, if : 42x = `1/32`
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve : 4x - 2 - 2x + 1 = 0
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0