Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
उत्तर
(b-2 - a-2) ÷ (b-1 - a-1)
This can be written as,
= `(1/b^2 - 1/a^2)/(1/b - 1/a)`
= `{(1/b)^2 - (1/a)^2}/(1/b - 1/a)`
= `= {(1/b + 1/a) (1/b - 1/a)}/(1/b — 1/a)`
We get,
= `1/b + 1/a`
APPEARS IN
संबंधित प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify : `"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`