Advertisements
Advertisements
Question
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
Solution
(b-2 - a-2) ÷ (b-1 - a-1)
This can be written as,
= `(1/b^2 - 1/a^2)/(1/b - 1/a)`
= `{(1/b)^2 - (1/a)^2}/(1/b - 1/a)`
= `= {(1/b + 1/a) (1/b - 1/a)}/(1/b — 1/a)`
We get,
= `1/b + 1/a`
APPEARS IN
RELATED QUESTIONS
Solve for x : (13)√x = 44 - 34 - 6
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify: a5 ÷ a3 + 3a × 2a
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`