Advertisements
Advertisements
प्रश्न
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
उत्तर
`[("p"^-3)^(2/3)]^(1/2)`
= `"p"^(-3 xx 2/3 xx 1/2)` .....(Using (am)n = amn)
= p-1
= `(1)/"p"`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Simplify: x5 ÷ (x2 × y2) × y3
Simplify the following:
`(27 xx^9)^(2/3)`
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`