Advertisements
Advertisements
Question
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Solution
`[("p"^-3)^(2/3)]^(1/2)`
= `"p"^(-3 xx 2/3 xx 1/2)` .....(Using (am)n = amn)
= p-1
= `(1)/"p"`.
APPEARS IN
RELATED QUESTIONS
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Simplify : `3"x"-[4"x"-overline(3"x"-5"y")-3 {2"x"-(3"x"-overline(2"x"-3"y"))}]`
Simplify: (x5 ÷ x2) × y2 × y3
Write each of the following in the simplest form:
a2 x a3 ÷ a4
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`