Advertisements
Advertisements
Question
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Solution
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
= `(x^4y^2)^(1/3) ÷ (x^5y^-5)^(1/6)`
= `(x^(4xx1/3)y^(2xx1/3)) ÷ (x^(5xx1/6)y^(-5xx1/6))` .....(Using (am)n = amn)
= `(x^(4/3)y^(2/3)) ÷ (x^(5/6)y^(-5/6))`
= `(x^(4/3)y^(2/3))/(x^(5/6)y^(-5/6))`
= `x^(4/3 - 5/6)y^(2/3 - (-5/6)` .....(Using (am)n = amn)
= `x^(1/2)y^(3/2)`
= `x^(1/2)(y^3)^(1/2)` .....(Using (am)n = amn)
= `sqrt(x) sqrt(y^3)`
= `sqrt(xy^3)`.
APPEARS IN
RELATED QUESTIONS
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Simplify: a5 ÷ a3 + 3a × 2a
Simplify: x5 ÷ (x2 × y2) × y3
Simplify: `3"a"xx[8"b" ÷ 4-6{"a"-(5"a"-overline(3"b"-2"a"))} ]`
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`