Advertisements
Advertisements
प्रश्न
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
उत्तर
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
= `(x^4y^2)^(1/3) ÷ (x^5y^-5)^(1/6)`
= `(x^(4xx1/3)y^(2xx1/3)) ÷ (x^(5xx1/6)y^(-5xx1/6))` .....(Using (am)n = amn)
= `(x^(4/3)y^(2/3)) ÷ (x^(5/6)y^(-5/6))`
= `(x^(4/3)y^(2/3))/(x^(5/6)y^(-5/6))`
= `x^(4/3 - 5/6)y^(2/3 - (-5/6)` .....(Using (am)n = amn)
= `x^(1/2)y^(3/2)`
= `x^(1/2)(y^3)^(1/2)` .....(Using (am)n = amn)
= `sqrt(x) sqrt(y^3)`
= `sqrt(xy^3)`.
APPEARS IN
संबंधित प्रश्न
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
Solve for x : (13)√x = 44 - 34 - 6
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify : `2{m-3(n+overline(m-2n))}`
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Simplify: 7x + 4 {x2 ÷ (5x ÷ 10)} − 3 {2 − x3 ÷ (3x2 ÷ x)}
Write each of the following in the simplest form:
(a3)5 x a4
Write each of the following in the simplest form:
`"a"^(1/3) ÷ "a"^(-2/3)`
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`