हिंदी

If 9^N. 3^2 . 3^N - (27)^N/(3^M . 2 )^3 = 3^-3 Show that : M - N = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`

Show that : m - n = 1.

योग

उत्तर

`[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`

⇒ `[ 3^(2n). 3^2 . 3^n - (3)^(3n)]/[3^(3m) . (2)^3]  = 1/3^3`

⇒ `[ 3^(3n) . 3^2 - 3^(3n) ]/[ 3^(3m) . 2^3 ] = 1/3^3`

⇒ `[ 3^(3n)( 3^2 - 1 ) ]/[ 3^(3m) xx 8 ] = 1/3^3`

⇒ `[ 3^(3n) xx 8 ]/[ 3^(3m) xx 8 ] = 1/3^3`

⇒ `1/[ 3^(3( m - n ))] = 1/3^( 3 xx 1 )`

⇒ m - n = 1  ( proved )

shaalaa.com
Simplification of Expressions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Indices (Exponents) - Exercise 7 (C) [पृष्ठ १०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 7 Indices (Exponents)
Exercise 7 (C) | Q 7 | पृष्ठ १०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×