Advertisements
Advertisements
प्रश्न
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
उत्तर
`[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
⇒ `[ 3^(2n). 3^2 . 3^n - (3)^(3n)]/[3^(3m) . (2)^3] = 1/3^3`
⇒ `[ 3^(3n) . 3^2 - 3^(3n) ]/[ 3^(3m) . 2^3 ] = 1/3^3`
⇒ `[ 3^(3n)( 3^2 - 1 ) ]/[ 3^(3m) xx 8 ] = 1/3^3`
⇒ `[ 3^(3n) xx 8 ]/[ 3^(3m) xx 8 ] = 1/3^3`
⇒ `1/[ 3^(3( m - n ))] = 1/3^( 3 xx 1 )`
⇒ m - n = 1 ( proved )
APPEARS IN
संबंधित प्रश्न
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
Simplify : `2{m-3(n+overline(m-2n))}`
Simplify: (x5 ÷ x2) × y2 × y3
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`