Advertisements
Advertisements
प्रश्न
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
उत्तर
`[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
⇒ `[ 3^(2n). 3^2 . 3^n - (3)^(3n)]/[3^(3m) . (2)^3] = 1/3^3`
⇒ `[ 3^(3n) . 3^2 - 3^(3n) ]/[ 3^(3m) . 2^3 ] = 1/3^3`
⇒ `[ 3^(3n)( 3^2 - 1 ) ]/[ 3^(3m) xx 8 ] = 1/3^3`
⇒ `[ 3^(3n) xx 8 ]/[ 3^(3m) xx 8 ] = 1/3^3`
⇒ `1/[ 3^(3( m - n ))] = 1/3^( 3 xx 1 )`
⇒ m - n = 1 ( proved )
APPEARS IN
संबंधित प्रश्न
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Simplify : `"p"^2"x"-2{"px"-3"x"("x"^2-overline(3"a"-"x"^2))}`
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`