Advertisements
Advertisements
प्रश्न
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
उत्तर
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
= `(3^4)^(3/4) - (1/2^5)^((-2)/5) + (2^3)^(1/3). (1/2)^-1 xx 1` ......(Using a0 = 1)
= `3^(4xx3/4) - (1)/(2^(5xx(-2/5))) + 2^(3xx1/3) .(2)^1` ......(Using (am)n = amn)
= `3^3 - (1)/(2^-2) + 2^1 . (2)^1`
= 33 - 22 + 21 + 1 .....`("Using" "a"^"m" xx "a"^"n" = "a"^"m+n" and "a"^-"n" = 1/"a"^"n")`
= 33 - 22 + 22
= 27.
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
Simplify: 7x + 4 {x2 ÷ (5x ÷ 10)} − 3 {2 − x3 ÷ (3x2 ÷ x)}
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`(27 xx^9)^(2/3)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`