Advertisements
Advertisements
प्रश्न
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
उत्तर
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
= `(3^4)^(3/4) - (1/2^5)^((-2)/5) + (2^3)^(1/3). (1/2)^-1 xx 1` ......(Using a0 = 1)
= `3^(4xx3/4) - (1)/(2^(5xx(-2/5))) + 2^(3xx1/3) .(2)^1` ......(Using (am)n = amn)
= `3^3 - (1)/(2^-2) + 2^1 . (2)^1`
= 33 - 22 + 21 + 1 .....`("Using" "a"^"m" xx "a"^"n" = "a"^"m+n" and "a"^-"n" = 1/"a"^"n")`
= 33 - 22 + 22
= 27.
APPEARS IN
संबंधित प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Simplify : `3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify: a5 ÷ a3 + 3a × 2a
Write each of the following in the simplest form:
a2 x a3 ÷ a4
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`