Advertisements
Advertisements
प्रश्न
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
उत्तर
`a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
L.H.S. = `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1)`
= `(1/a)/(1/a + 1/b) + (1/a)/(1/a - 1/b)`
= `(1/a)/((b + a)/(ab)) + (1/a)/((b - a)/(ab))`
= `1/a xx (ab)/(b+ a) + 1/a xx (ab)/(b - a)`
= `b/( b + a ) + b/(b - a)`
= `( b^2 - ab + b^2 + ab )/( b^2 - a^2 )`
= `( 2b^2 )/( b^2 - a^2 )`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
If (am)n = am .an, find the value of : m(n - 1) - (n - 1)
Simplify : `2{m-3(n+overline(m-2n))}`
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify: a5 ÷ a3 + 3a × 2a
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`