Advertisements
Advertisements
प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
उत्तर
`(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
= `(4^3)^(2/3) - root(3)(5^3) - 2^5 + (3^3)^(-2/3) xx ((5^2)/(3^2))^(-1/2)`
= `4^2 - 5 - 2^5 + 3^-2 xx (5/3)^( 2 xx (-1/2)`
= `16 - 5 - 32 + 1/3^2 xx (5/3)^-1`
= `- 21 + 1/9 xx 3/5`
= `- 21 + 1/15`
= `[ - 315 + 1 ]/15`
= `- 314/15`
= `- 20 14/15`
APPEARS IN
संबंधित प्रश्न
Solve for x : (13)√x = 44 - 34 - 6
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify : `2{m-3(n+overline(m-2n))}`
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following:
`(27 xx^9)^(2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`