Advertisements
Advertisements
प्रश्न
Simplify the following:
`(27 xx^9)^(2/3)`
उत्तर
`(27 xx^9)^(2/3)`
= `(3^3 xx^9)^(2/3)`
= `(3^3)^(2/3)(xx^9)^(2/3)` ......(Using (a x b)n = an x bn)
= `(3)^(3 xx 2/3) (xx)^(9 xx 2/3)` .....(Using (am)n = amn)
= (3)2 x3 x 2
= 9 x6.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Write each of the following in the simplest form:
`"a"^(1/3) ÷ "a"^(-2/3)`
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`