Advertisements
Advertisements
प्रश्न
Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
उत्तर
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
= `[2^n xx 6^m xx 6 xx 10^m xx 10^(-n) xx 15^m xx 15^n xx 15^(-2 )]/[4^m xx (3^2)^m xx 3^n xx 25^m xx 25^-1 ]`
= `[( 2 xx 1/10 xx 15)^n xx ( 6 xx 10 xx 15 )^m xx 6 xx 1/15^2 ]/[ 3^n xx ( 4 xx 3^2 xx 25 )^m xx 1/25 ]`
= `[ 3^n xx 900^m xx 6/225]/[ 3^n xx 900^m xx 1/25]`
= `6/225 xx 25/1`
= `6/9`
= `2/3`
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify: a5 ÷ a3 + 3a × 2a
Simplify: x5 ÷ (x2 × y2) × y3
Simplify: (y3 − 5y2) ÷ y × (y − 1)
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`