Advertisements
Advertisements
प्रश्न
Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
उत्तर
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
= `[2^n xx 6^m xx 6 xx 10^m xx 10^(-n) xx 15^m xx 15^n xx 15^(-2 )]/[4^m xx (3^2)^m xx 3^n xx 25^m xx 25^-1 ]`
= `[( 2 xx 1/10 xx 15)^n xx ( 6 xx 10 xx 15 )^m xx 6 xx 1/15^2 ]/[ 3^n xx ( 4 xx 3^2 xx 25 )^m xx 1/25 ]`
= `[ 3^n xx 900^m xx 6/225]/[ 3^n xx 900^m xx 1/25]`
= `6/225 xx 25/1`
= `6/9`
= `2/3`
APPEARS IN
संबंधित प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
Prove that: `a^-1/(a^-1+b^-1) + a^-1/(a^-1 - b^-1) = (2b^2)/(b^2 - a^2 )`
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify : `"p"^2"x"-2{"px"-3"x"("x"^2-overline(3"a"-"x"^2))}`
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify: 7x + 4 {x2 ÷ (5x ÷ 10)} − 3 {2 − x3 ÷ (3x2 ÷ x)}
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`