Advertisements
Advertisements
प्रश्न
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
उत्तर
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
= `("a")^("m"xx ("m" - 1/"m") xx (1/("m" + 1))` .....(Using am ÷ an = am -n)
Consider, `"m" xx ("m" - 1/"m") xx (1/"m" + 1)`
= `("m"^2 - 1) xx (1/"m" + 1)`
= `"m"^2 xx (1/"m" + 1) -1 xx (1/"m" + 1)`
= `("m"^2)/("m" + 1) - (1)/("m" + 1)`
= `("m"^2 - 1)/("m" + 1)`
= `(("m" - 1)("m" + 1))/("m" + 1)`
= `"m" - 1("a") "m"xx("m" - 1/"m") xx (1/"m" + 1)`
= am - 1.
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Simplify : `2{m-3(n+overline(m-2n))}`
Simplify : `"p"^2"x"-2{"px"-3"x"("x"^2-overline(3"a"-"x"^2))}`
Simplify: x5 ÷ (x2 × y2) × y3
Simplify: (x5 ÷ x2) × y2 × y3
Write each of the following in the simplest form:
`"a"^(1/3) ÷ "a"^(-2/3)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`