Advertisements
Advertisements
प्रश्न
Simplify : `2{m-3(n+overline(m-2n))}`
उत्तर
`2{m-3(n+overline(m-2n))}`
The overline indicates grouping. Simplify `\overline{m - 2n}`:
`\overline(m−2n)=m−2n`
Substitute this back into the expression
2{m − 3(n + (m − 2n))}
Simplify n + (m − 2n)
n + m − 2n = m − n
2{m − 3(m − n)}
Distribute −3 across (m−n):
−3(m − n) = −3m + 3n
2{m + (−3m + 3n)}
m − 3m + 3n = −2m + 3n
Distribute 2 across −2m + 3n
2(−2m + 3n) = −4m + 6n
−4m + 6n
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Solve for x : (13)√x = 44 - 34 - 6
If (am)n = am .an, find the value of : m(n - 1) - (n - 1)
Simplify : `"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`
Simplify: (y3 − 5y2) ÷ y × (y − 1)
Simplify: 7x + 4 {x2 ÷ (5x ÷ 10)} − 3 {2 − x3 ÷ (3x2 ÷ x)}
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following and express with positive index:
`[("p"^-3)^(2/3)]^(1/2)`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`