Advertisements
Advertisements
Question
Simplify : `2{m-3(n+overline(m-2n))}`
Solution
`2{m-3(n+overline(m-2n))}`
The overline indicates grouping. Simplify `\overline{m - 2n}`:
`\overline(m−2n)=m−2n`
Substitute this back into the expression
2{m − 3(n + (m − 2n))}
Simplify n + (m − 2n)
n + m − 2n = m − n
2{m − 3(m − n)}
Distribute −3 across (m−n):
−3(m − n) = −3m + 3n
2{m + (−3m + 3n)}
m − 3m + 3n = −2m + 3n
Distribute 2 across −2m + 3n
2(−2m + 3n) = −4m + 6n
−4m + 6n
APPEARS IN
RELATED QUESTIONS
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify: a5 ÷ a3 + 3a × 2a
Simplify: (x5 ÷ x2) × y2 × y3
Simplify: `3"a"xx[8"b" ÷ 4-6{"a"-(5"a"-overline(3"b"-2"a"))} ]`
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`((36"m"^-4)/(49"n"^-2))^(-3/2)`
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`