Advertisements
Advertisements
प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
उत्तर
`(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
= `(4^3)^(2/3) - root(3)(5^3) - 2^5 + (3^3)^(-2/3) xx ((5^2)/(3^2))^(-1/2)`
= `4^2 - 5 - 2^5 + 3^-2 xx (5/3)^( 2 xx (-1/2)`
= `16 - 5 - 32 + 1/3^2 xx (5/3)^-1`
= `- 21 + 1/9 xx 3/5`
= `- 21 + 1/15`
= `[ - 315 + 1 ]/15`
= `- 314/15`
= `- 20 14/15`
APPEARS IN
संबंधित प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
Simplify : `"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`
Simplify: a5 ÷ a3 + 3a × 2a
Simplify: x5 ÷ (x2 × y2) × y3
Simplify: `3"a"xx[8"b" ÷ 4-6{"a"-(5"a"-overline(3"b"-2"a"))} ]`
Write each of the following in the simplest form:
(a3)5 x a4
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`
Simplify the following:
`(5^("n" + 2) - 6.5^("n" + 1))/(13.5^"n" - 2.5^("n" + 1)`