Advertisements
Advertisements
प्रश्न
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
उत्तर
`root(3)(15) and n = root(3)(14)`
⇒ m3 = 15 and n3 = 14
∴ m - n - `1/(m^2 + mn + n^2)`
= `[(m^3 + m^2n + mn^2 ) - (m^2n + mn^2 + n^3 ) - 1]/[m^2 + mn + n^2 ]`
= `[ m^3 + m^2n + mn^2 - m^2n - mn^2 - n^3 - 1 ]/[m^2 + mn + n^2 ]`
= `[m^3 - n^3 - 1]/[ m^2 + mn + n^2 ]`
= `[ 15 - 14 - 1 ]/[ m^2 + mn + n^2 ]`
= `[ 1 - 1 ]/[ m^2 + mn + n^2 ]`
= 0
APPEARS IN
संबंधित प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x : 9x+2 = 720 + 9x
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Solve for x:
5x2 : 5x = 25 : 1
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz