हिंदी

If M = Root(3)(15) and N = Root(3)(14), "Find the Value of " M - N - 1/ M^2 + Mn + N^2 - Mathematics

Advertisements
Advertisements

प्रश्न

If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`

योग

उत्तर

`root(3)(15) and n = root(3)(14)`
⇒ m3 = 15 and n3 = 14

∴ m - n - `1/(m^2 + mn + n^2)`

= `[(m^3 + m^2n + mn^2 ) - (m^2n + mn^2 + n^3 ) - 1]/[m^2 + mn + n^2 ]`

= `[ m^3 + m^2n + mn^2 - m^2n - mn^2 - n^3 - 1 ]/[m^2 + mn + n^2 ]`

= `[m^3 - n^3 - 1]/[ m^2 + mn + n^2 ]`

= `[ 15 - 14 - 1 ]/[ m^2 + mn + n^2 ]`

= `[ 1 - 1 ]/[ m^2 + mn + n^2 ]`

= 0

shaalaa.com
Solving Exponential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Indices (Exponents) - Exercise 7 (C) [पृष्ठ १०१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 7 Indices (Exponents)
Exercise 7 (C) | Q 12 | पृष्ठ १०१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×