Advertisements
Advertisements
प्रश्न
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
उत्तर
`4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
= `4/(6^3)^(-2/3) + 1/(4^4)^(-3/4) + 2/(3^5)^(-1/5)`
= `4/(6)^-2 + 1/(4)^-3 + 2/(3)^-1`
= 4 x 62 + 1 x 43 + 2 x 3
= 4 x 36 + 1 x 64 + 6
= 144 + 64 + 6
= 214
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : 4x - 2 - 2x + 1 = 0
Solve : `[3^x]^2` : 3x = 9 : 1
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Solve for x:
p3 x p-2 = px
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0