Advertisements
Advertisements
प्रश्न
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
उत्तर
Let `root(x)("a") = root(y)("b") = root(z)("c")`
⇒ `"a"^(1/x) = "k", "b"^(1/y) = "k", "c"^(1/z) = "k"`
⇒ a = k, b = k, c = k
It is also given that abc = 1
⇒ kx x ky x kz = 1
⇒ `"k"^(x + y + z)` = k°
⇒ x + y + z = 0.
APPEARS IN
संबंधित प्रश्न
Solve for x : 25x-1 = 4 23x + 1
Find x, if : 42x = `1/32`
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
Solve for x : 9x+2 = 720 + 9x
Prove that : `((x^a)/(x^b))^( a + b - c ) (( x^b)/(x^c))^( b + c - a )((x^c)/(x^a))^( c + a - b)`
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0