Advertisements
Advertisements
प्रश्न
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
उत्तर
22x − 1 − 9 x 2x − 2 + 1= 0
22x . 2−1 − 9 x 2x . 2−2 + 1 = 0
Let 2x = t, so 22x = t2
So, 22x . 2−1 − 9 x 2x . 2−2 + 1 = 0 becomes `"t"^2/(2) - 9 xx "t"/(2^2) + 1` = 0
⇒ `"t"^2/(2) - (9"t")/(4) + 1`= 0
⇒ 2t2 − 9t + 4 = 0
⇒ 2t2 − 8t − t + 4 = 0
⇒ 2t(t − 4) − 1(t − 4) = 0
⇒ (t − 4)(2t − 1) = 0
⇒ t − 4 = 0 or 2t − 1 = 0
⇒ t = 4 or `"t" = (1)/(2)`
So, 2x = 4 or 2x = `(1)/(2)`
⇒ 2x = 22 or 2x = 2−1
⇒ x = 2 or x = −1.
APPEARS IN
संबंधित प्रश्न
Find x, if : `sqrt( 2^( x + 3 )) = 16`
Solve : 22x + 2x+2 - 4 x 23 = 0
Simplify : `[ 3 xx 9^( n + 1 ) - 9 xx 3^(2n)]/[3 xx 3^(2n + 3) - 9^(n + 1 )]`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Solve for x:
22x+1= 8
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1