Advertisements
Advertisements
प्रश्न
Solve for x:
5x2 : 5x = 25 : 1
उत्तर
5x2 : 5x = 25 : 1
⇒ `(5x^2)/(5x) = (25)/(1)`
⇒ `(5x^2)/(5x) = (5^2)/(1)`
⇒ 5x2 = 52 x 5x
⇒ 5x2 = 52+x
⇒ x2 = 2 + x
⇒ x2 - x - 2 = 0
⇒ (x - 2)(x + 1) = 0
⇒ x - 2 = 0 or x + 1 = 0
⇒ x = 2 or x = -1.
APPEARS IN
संबंधित प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
Solve : 4x - 2 - 2x + 1 = 0
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
`"p"^-5 = (1)/"p"^(x + 1)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.