Advertisements
Advertisements
प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
उत्तर
`( sqrt(3/5))^( x + 1) = 125/27`
⇒ `[(3/5)^(1/2)]^( x + 1 ) = [ 5 xx 5 xx 5 ]/[ 3 xx 3 xx 3]`
⇒ `(3/5)^[( x + 1 )/2] = (5/3)^3`
⇒ `(3/5)^[( x + 1 )/2] = (3/5)^- 3`
We know that if bases are equal, the powers are equal
⇒ `[ x + 1 ]/2 = -3`
⇒ x + 1 = - 6
⇒ x = - 6 - 1
⇒ x = - 7
APPEARS IN
संबंधित प्रश्न
Solve for x:
`3^(4x + 1) = (27)^(x + 1)`
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Solve for x:
9x+4 = 32 x (27)x+1
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If `root(x)("a") = root(y)("b") = root(z)("c")` and abc = 1, prove that x + y + z = 0
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`