Advertisements
Advertisements
प्रश्न
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
उत्तर
We need to prove that
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
LHS =
= `x^[a(b - c ) - b( a - c )] ÷ x^(bc)/x^(ac)`
= `x^( ab - ac - ab + bc ) ÷ x^( bc - ac )`
= `x^( ab - ac - ab + bc - bc + ac )`
= `x^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
If m ≠ n and (m + n)-1 (m-1 + n-1) = mxny, show that : x + y + 2 = 0
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
22x+1= 8
Solve for x:
9x+4 = 32 x (27)x+1
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1