Advertisements
Advertisements
Question
Prove that :
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
Solution
We need to prove that
`[ x^(a(b - c))]/[x^b(a - c)] ÷ ((x^b)/(x^a))^c = 1`
LHS =
= `x^[a(b - c ) - b( a - c )] ÷ x^(bc)/x^(ac)`
= `x^( ab - ac - ab + bc ) ÷ x^( bc - ac )`
= `x^( ab - ac - ab + bc - bc + ac )`
= `x^0`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Solve : 4x - 2 - 2x + 1 = 0
Solve : `[3^x]^2` : 3x = 9 : 1
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`