Advertisements
Advertisements
Question
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
Solution
L.H.S.
= `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
= `(1 + "a"^("q"- "p") + 1 + "a"^("p" - "q"))/((1 + "a"^("p"-"q"))(1 + "a"^("q"-"p"))`
= `(2 + "a"^-("p" -"q") + "a"^("p" - "q"))/((1 + "a"^("p"-"q"))(1 + "a"^-("q"-"p"))`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^("p"-"q") . "a"^-("p"-"q")`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^("p"-"q"-"p"+"q")`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^0`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + 1`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(2 + "a"^-("p"-"q") + "a"^("p"-"q"))`
= 1
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve : `[3^x]^2` : 3x = 9 : 1
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Solve for x : (a3x + 5)2. (ax)4 = a8x + 12
If 4x + 3 = 112 + 8 × 4x, find the value of (18x)3x.
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
Solve x and y if : ( √32 )x ÷ 2y + 1 = 1 and 8y - 164 - x/2 = 0
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
If ax = by = cz and b2 = ac, prove that y = `(2xz)/(z + x)`
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0