Advertisements
Advertisements
प्रश्न
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
उत्तर
L.H.S.
= `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
= `(1 + "a"^("q"- "p") + 1 + "a"^("p" - "q"))/((1 + "a"^("p"-"q"))(1 + "a"^("q"-"p"))`
= `(2 + "a"^-("p" -"q") + "a"^("p" - "q"))/((1 + "a"^("p"-"q"))(1 + "a"^-("q"-"p"))`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^("p"-"q") . "a"^-("p"-"q")`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^("p"-"q"-"p"+"q")`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + "a"^0`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(1 + "a"^-("p"-"q") + "a"^("p"-"q") + 1`
= `(2 + "a"^-("p"-"q") + "a"^("p"-"q"))/(2 + "a"^-("p"-"q") + "a"^("p"-"q"))`
= 1
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve for x : (49)x + 4 = 72 x (343)x + 1
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Solve for x:
p3 x p-2 = px
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Solve for x:
5x2 : 5x = 25 : 1
If a = `2^(1/3) - 2^((-1)/3)`, prove that 2a3 + 6a = 3
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Prove the following:
`("a"^"m"/"a"^"n")^("m"+"n"+1) ·("a"^"n"/"a"^1)^("n" + 1-"m").("a"^1/"a"^"m")^(1+"m"-"n")`