Advertisements
Advertisements
प्रश्न
Solve for x:
5x2 : 5x = 25 : 1
उत्तर
5x2 : 5x = 25 : 1
⇒ `(5x^2)/(5x) = (25)/(1)`
⇒ `(5x^2)/(5x) = (5^2)/(1)`
⇒ 5x2 = 52 x 5x
⇒ 5x2 = 52+x
⇒ x2 = 2 + x
⇒ x2 - x - 2 = 0
⇒ (x - 2)(x + 1) = 0
⇒ x - 2 = 0 or x + 1 = 0
⇒ x = 2 or x = -1.
APPEARS IN
संबंधित प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Solve for x:
9x+4 = 32 x (27)x+1
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1