Advertisements
Advertisements
Question
If 5-P = 4-q = 20r, show that : `1/p + 1/q + 1/r = 0`
Solution
Let 5-P = 4-q = 20r = k
5-P = k ⇒ 5 = `k^(-1/p) [ ∵ a^p = b^q ⇒ a = b^(q/p) ]`
4-q = k ⇒ 4 = `k^(-1/q) [ ∵ a^p = b^q ⇒ a = b^(q/p) ]`
20r = k ⇒ 20 = `k^(1/r) [ ∵ a^p = b^q ⇒ a = b^(q/p) ]`
5 x 4 = 20
⇒ `k^(-1/p) xx k^(-1/q) = k^(1/r)`
⇒ `k^( - 1/p- 1/q) = k^(1/r)`
⇒ `k^0 = k^(1/p + 1/q + 1/r)`
If bases are equal, powers are also equal.
⇒ `1/p + 1/q + 1/r = 0`
APPEARS IN
RELATED QUESTIONS
Solve : `[3^x]^2` : 3x = 9 : 1
Solve : 22x + 2x+2 - 4 x 23 = 0
Solve for x:
`2^(3x + 3) = 2^(3x + 1) + 48`
Solve : 3x-1× 52y-3 = 225.
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Find the value of (8p)p if 9p + 2 - 9p = 240.
If `x^(1/3) + y^(1/3) + z^(1/3) = 0`, prove that (x + y + z)3 = 27xyz
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Find the value of 'a' and 'b' if:
92a = `(root(3)(81))^(-6/"b") = (sqrt(27))^2`
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1