Advertisements
Advertisements
प्रश्न
If ax = b, by = c and cz = a, prove that : xyz = 1.
उत्तर
We are given that
ax = b, by = c and cz = a
Consider the equation
ax = b
⇒ axyz = byz [ raising to the power yz on both sides ]
⇒ axyz = (by)z
⇒ axyz = cz [ ∵ by = c ]
⇒ axyz = cz
⇒ axyz = a [ ∵ cz = a ]
⇒ axyz = a1
⇒ xyz = 1
APPEARS IN
संबंधित प्रश्न
Solve : 4x - 2 - 2x + 1 = 0
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
Evaluate the following:
`(4^3 xx 3^7 xx 5^6)/(5^8 xx 2^7 xx 3^3)`
Evaluate the following:
`16^(3/4) + 2(1/2)^-1 xx 3^0`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
22x+1= 8
Solve for x:
2x + 3 + 2x + 1 = 320
Solve for x:
22x- 1 − 9 x 2x − 2 + 1 = 0
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`