Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
उत्तर
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
= `(1/2^2)^(1/2) + (0.1)^-1 - 3^2`
= `(1/2) + (0.1)^-1 - 3^2`
= `(1)/(2) + (1)/(0.1) - 9`
= `(1)/(2) + (10)/(1) - 9`
= `(1)/(2) + 1`
= `(3)/(2)`.
APPEARS IN
संबंधित प्रश्न
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Evaluate : `[(-2/3)^-2]^3 xx (1/3)^-4 xx 3^-1 xx 1/6`
Evaluate the following:
`(2^6 xx 5^-4 xx 3^-3 xx 4^2)/(8^3 xx 15^-3 xx 25^-1)`
Solve for x:
1 = px
Solve for x:
9x+4 = 32 x (27)x+1
Find the value of k in each of the following:
`(sqrt(9))^-7 xx (sqrt(3))^-5` = 3k
Find the value of k in each of the following:
`(1/3)^-4 ÷ 9^((-1)/(3)` = 3k
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1