Advertisements
Advertisements
प्रश्न
Find x, if : `(root(3)( 2/3))^( x - 1 ) = 27/8`
उत्तर
`(root(3)( 2/3))^( x - 1 ) = 27/8`
`[(2/3)^(1/3)]^( x - 1 ) = 3^3/2^3`
⇒ `(2/3)^[( x - 1 )/3] = (3/2)^3`
⇒ `(2/3)^[( x - 1 )/3] = (2/3)^-3`
We know that if bases are equal, the powers are equal
⇒ `[ x - 1 ]/3 = -3`
⇒ x - 1 = - 9
⇒ x = - 9 + 1
⇒ x = - 8
APPEARS IN
संबंधित प्रश्न
Solve for x : 22x+1 = 8
Solve : 4x - 2 - 2x + 1 = 0
Solve for x : 9x+2 = 720 + 9x
Solve for x: `4^(x-1) × (0.5)^(3 - 2x) = (1/8)^-x`
Solve for x : `(81)^(3/4) - (1/32)^(-2/5) + x(1/2)^(-1).2^0 = 27`
Evaluate : `4/(216)^(-2/3) + 1/(256)^(-3/4) + 2/(243)^(-1/5)`
Evaluate the following:
`sqrt(1/4) + (0.01)^(-1/2) - (27)^(2/3)`
Solve for x:
22x+1= 8
If ax = by = cz and abc = 1, show that
`(1)/x + (1)/y + (1)/z` = 0.
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1