Advertisements
Advertisements
प्रश्न
Find x, if : `( sqrt(3/5))^( x + 1) = 125/27`
उत्तर
`( sqrt(3/5))^( x + 1) = 125/27`
⇒ `[(3/5)^(1/2)]^( x + 1 ) = [ 5 xx 5 xx 5 ]/[ 3 xx 3 xx 3]`
⇒ `(3/5)^[( x + 1 )/2] = (5/3)^3`
⇒ `(3/5)^[( x + 1 )/2] = (3/5)^- 3`
We know that if bases are equal, the powers are equal
⇒ `[ x + 1 ]/2 = -3`
⇒ x + 1 = - 6
⇒ x = - 6 - 1
⇒ x = - 7
APPEARS IN
संबंधित प्रश्न
Find x, if : 42x = `1/32`
If ax = by = cz and b2 = ac, prove that: y = `[2xz]/[x + z]`
If `((a^-1b^2 )/(a^2b^-4))^7 ÷ (( a^3b^-5)/(a^-2b^3))^-5 = a^x . b^y` , find x + y.
Evaluate the following:
`(27)^(2/3) xx 8^((-1)/6) ÷ 18^((-1)/2)`
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Solve for x:
9x+4 = 32 x (27)x+1
Find the value of (8p)p if 9p + 2 - 9p = 240.
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1