Advertisements
Advertisements
प्रश्न
Find the value of 'a' and 'b' if:
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0
उत्तर
`(sqrt243)^"a" ÷ 3^("b" + 1)` = 1 and `27^"b" - 81^(4 -"a"/2)` = 0
⇒ `(sqrt(3^5))^"a" ÷ 3^("b" + 1) and (3^3)^"b" - (3^4)^(4 - "a"/2)` = 0
⇒ `(3^5)^("a"/2) ÷ 3^("b" + 1) = 1 and 3^(3"b") - (3^4)^(4 - "a"/2)` = 0
⇒ `3^(((5"a")/2)) ÷ 3^("b" + 1) = 1 and 3^((3"b")) - 3^(4(4 - "a"/2)` = 0
⇒ `3^(((5"a")/2 - "b" - 1)) = 1 and 3^((3"b")) - 3^(16 - 2"a")` = 0
⇒ `3^(((5"a")/2 - "b" - 1)) = 3^° and 3^(3"b") = 3^(16 - 2"a")`
⇒ `(5"a")/(2) - "b" - 1 = 0 and 3"b"` = 16 - 2a
⇒ `(5"a")/(2) - "b" = 1 and 2"a" + 3"b"` = 16
⇒ 5a - 2b = 2 and 2a + 3b = 16
Multiply the equations by 3 and 2 respectively.
⇒ 15a - 6b = 6 and 4a + 6b = 32
Adding the equations,
19a = 38
⇒ a = 2
Substitute the value of ain 5a - 2b = 2 to find b.
5a - 2b = 2
⇒ 5(2) - 2b = 2
⇒ 10 - 2b = 2
⇒ b = 4
Hence, a = 2 and b = 4.
APPEARS IN
संबंधित प्रश्न
Solve for x : 22x+1 = 8
Solve for x : 3(2x + 1) - 2x + 2 + 5 = 0
If ax = b, by = c and cz = a, prove that : xyz = 1.
If 3x + 1 = 9x - 3 , find the value of 21 + x.
Evaluate the following:
`(2^3 xx 3^5 xx 24^2)/(12^2 xx 18^3 xx 27)`
Evaluate the following:
`(1 - 15/64)^(-1/2)`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
2x + 3 + 2x + 1 = 320
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1
Prove the following:
`(x^("p"("q"-"r")))/(x^("q"("p"-"r"))) ÷ (x^"q"/x^"p")^"r"` = 1