Advertisements
Advertisements
प्रश्न
Find x, if : 42x = `1/32`
उत्तर
42x = `1/32`
⇒ ( 2 x 2 )2x = `1/[ 2 xx 2 xx 2 xx 2 xx 2]`
⇒ ( 22 )2x = `1/[ 2^5]`
⇒ 22 x 2x = 2- 5
⇒ 24x = 2- 5
We know that if bases are equal, the powers are equal
⇒ 4x = - 5
⇒ x = `(-5)/4`
APPEARS IN
संबंधित प्रश्न
Find the values of m and n if :
`4^(2m) = ( root(3)(16))^(-6/n) = (sqrt8)^2`
If 2x = 4y = 8z and `1/(2x) + 1/(4y) + 1/(8z) = 4` , find the value of x.
If m = `root(3)(15) and n = root(3)(14), "find the value of " m - n - 1/[ m^2 + mn + n^2 ]`
Evaluate the following:
`(8/27)^((-2)/3) - (1/3)^-2 - 7^0`
Solve for x:
9 x 81x = `(1)/(27^(x - 3)`
Solve for x:
`sqrt((8^0 + 2/3)` = (0.6)2-3x
Solve for x:
`sqrt((3/5)^(x + 3)) = (27^-1)/(125^-1)`
If x = `3^(2/3) + 3^(1/3)`, prove that x3 - 9x - 12 = 0
Prove the following:
`(x^("a"+"b")/x^"c")^("a"-"b") · (x^("c"+"a")/(x^"b"))^("c"-"a") · ((x^("b"+"c"))/(x"a"))^("b"-"c")` = 1
Prove the following:
(xa)b-c x (xb)c-a x (xc)a-b = 1