Advertisements
Advertisements
प्रश्न
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
उत्तर
L.H.S. = `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 )`
= `( a + b + c )/(1/(ab) + 1/(bc) + 1/(ca) )`
= `( a + b + c )/(( c + a + b )/(abc))`
= `(( a + b + c )( abc ))/( a + b + c )`
= abc
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If `[ 9^n. 3^2 . 3^n - (27)^n]/[ (3^m . 2 )^3 ] = 3^-3`
Show that : m - n = 1.
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
Simplify : `"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`
Simplify : `2{m-3(n+overline(m-2n))}`
Write each of the following in the simplest form:
a-3 x a2 x a0
Write the following in the simplest form:
(b-2 - a-2) ÷ (b-1 - a-1)
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`
Simplify the following:
`(2^"m" xx 3 - 2^"m")/(2^("m" + 4) - 2^("m" + 1)`