Advertisements
Advertisements
Question
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Solution
L.H.S. = `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 )`
= `( a + b + c )/(1/(ab) + 1/(bc) + 1/(ca) )`
= `( a + b + c )/(( c + a + b )/(abc))`
= `(( a + b + c )( abc ))/( a + b + c )`
= abc
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If (am)n = am .an, find the value of : m(n - 1) - (n - 1)
Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `3"x"-[4"x"-overline(3"x"-5"y")-3 {2"x"-(3"x"-overline(2"x"-3"y"))}]`
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following and express with positive index:
3p-2q3 ÷ 2p3q-2
Simplify the following:
`root(3)(x^4y^2) ÷ root(6)(x^5y^-5)`
Simplify the following:
`{("a"^"m")^("m" - 1/"m")}^(1/("m" + 1)`
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`