Advertisements
Advertisements
प्रश्न
Simplify the following:
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
उत्तर
`x^("m" + 2"n"). x^(3"m" - 8"n") ÷ x^(5"m" - 60)`
= `x^("m" + 2"n" + 3"m" - 8"n" - 5"m" -(-60)` .....(Using am x an = am+n and am ÷ an = am-n)
= `x^("m" + 2"n" + 3"m" - 8"n" - 5"m" + 60)`
= `x^(-"m"-6"n" + 60)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `(64)^(2/3) - root(3)(125) - 1/2^(-5) + (27)^(-2/3) xx (25/9)^(-1/2)`
Evaluate :
`[ 2^n xx 6^(m + 1 ) xx 10^( m - n ) xx 15^(m + n - 2)]/[4^m xx 3^(2m + n) xx 25^(m - 1)]`
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `2{m-3(n+overline(m-2n))}`
Simplify : `"p"^2"x"-2{"px"-3"x"("x"^2-overline(3"a"-"x"^2))}`
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(5^x xx 7 - 5^x)/(5^(x + 2) - 5^(x + 1)`