Advertisements
Advertisements
प्रश्न
If 34x = ( 81 )-1 and `10^(1/y) = 0.0001, "Find the value of " 2^(- x ) xx 16^y `
उत्तर
34x = ( 81 )-1 and `10^(1/y)` = 0.0001
⇒ 34x = `( 3^4 )^-1 and 10^(1/y) = 1/10000`
⇒ 34x = `3^-4 and 10^(1/y) = 1/10^4`
⇒ 4x = - 4 and `10^(1/y) = 10^-4`
⇒ x = - 1 and `1/y` = - 4
⇒ x = - 1 and y = `-1/4`
∴ `2^-x xx 16^y = 2^(-(-1)) x 16^(-1/4)`
= ` 2 xx 2^( 4 xx - 1/4 )`
= ` 2 xx 2^-1`
= `2^(1 - 1)`
= `2^0`
= 1
APPEARS IN
संबंधित प्रश्न
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Simplify : `"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`
Simplify: a5 ÷ a3 + 3a × 2a
Simplify: (y3 − 5y2) ÷ y × (y − 1)
Simplify: `3"a"xx[8"b" ÷ 4-6{"a"-(5"a"-overline(3"b"-2"a"))} ]`
Write each of the following in the simplest form:
a2 x a3 ÷ a4
Write each of the following in the simplest form:
a-3 x a2 x a0
Simplify the following:
`(8 xx^6y^3)^(2/3)`
Simplify the following:
`(27/343)^(2/3) ÷ (1)/(625/1296)^(1/4) xx (536)/root(3)(27)`
Simplify the following:
`(3^(x + 1) + 3^x)/(3^(x + 3) - 3^(x + 1)`