Advertisements
Advertisements
प्रश्न
Simplify the following:
`((64"a"^12)/(27"b"^6))^(-2/3)`
उत्तर
`((64"a"^12)/(27"b"^6))^(-2/3)`
= `((2^6 "a"^12)/(3^3"b"^6))^(-2/3)`
= `((2^(6xx(-2/3)) "a"^(12xx(-2/3)))/(3^(3xx^((-2/3)))"b"^(6xx(-2/3)))) ......("Using"("a" xx "b"^"n") = "a"^"n" xx "b"^"n" and ("a"/"b")^"n" = "a"^"n"/"b"^"n")`
= `(2^-4 "a"^-8)/(3^-2"b"^-4)`
= `(3^2"b"^4)/(2^4"a"^8) .....("Using" "a"^-"n" = 1/"a"^"n")`
= `(9"b"^4)/(16"a"^8)`.
APPEARS IN
संबंधित प्रश्न
Solve for x : (13)√x = 44 - 34 - 6
Solve : 3(2x + 1) - 2x+2 + 5 = 0.
Prove that : `( a + b + c )/( a^-1b^-1 + b^-1c^-1 + c^-1a^-1 ) = abc`
Evaluate : `((x^q)/(x^r))^(1/(qr)) xx ((x^r)/(x^p))^(1/(rp)) xx ((x^p)/(x^q))^(1/(pq))`
Simplify : a2 − 2a + {5a2 − (3a - 4a2)}
Simplify : −3 (1 − x2) − 2{x2 − (3 − 2x2)}
Simplify : `2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`
Simplify: (y3 − 5y2) ÷ y × (y − 1)
Simplify the following:
`("a"^(1/3) + "a"^(-1/3))("a"^(2/3) - 1 + "a"^(-2/3))`
Simplify the following:
`(81)^(3/4) - (1/32)^(-2/5) + 8^(1/3).(1/2)^-1. 2^0`