Advertisements
Advertisements
Question
Solve for x:
22x+3 - 9 x 2x + 1 = 0
Solution
22x+3 - 9 x 2x + 1 = 0
22x . 23 - 9 x 2x + 1 = 0
Put2x = t, so, 22x = t2
So, 22x . 23 - 9 x 2x + 1 = 0 becomes 8t2 - 9t + 1 = 0
⇒ 8t2 - 8t - t + 1 = 0
⇒ 8t(t - 1) - (t - 1) = 0
⇒ t - 1 = 0 or 8t - 1 = 0
⇒ t = 1 or t = `(1)/(8)`
⇒ 2x = 1 or 2x = `(1)/(2^3)`
⇒ 2x = 20 or 2x = 2-3
⇒ x = 0 or x = -3.
APPEARS IN
RELATED QUESTIONS
Solve : 8 x 22x + 4 x 2x + 1 = 1 + 2x
If 5x + 1 = 25x - 2, find the value of 3x - 3 × 23 - x.
Evaluate the following:
`9^(5/2) - 3 xx 5^0 - (1/81)^((-1)/2)`
Solve for x:
22x+1= 8
Solve for x:
22x + 2x +2 - 4 x 23 = 0
Find the value of k in each of the following:
`root(4)root(3)(x^2)` = xk
Show that : `(1)/(1 + "a"^("p"- "q")) + (1)/(1 + "a"^("q"- "p")`
If 2250 = 2a. 3b. 5c, find a, b and c. Hence, calculate the value of 3a x 2-b x 5-c.
If 2x = 3y = 12z ; show that `(1)/z = (1)/y + (2)/x`.
Prove the following:
`root("ab")(x^"a"/x^"b")·root("bc")(x^"b"/x^"c")·root("ca")(x^"c"/x^"a")` = 1